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Under some assumptions on a function F and its Fourier transform £ we prove
new estimates of best approximation of F by entire functions of exponential type &
in L,(R), 1 €p<2. The proof is based on some inequalities for Fin L (R) which
may be treated as generalizations of results of Bausov and Telyakovskii. As an
application we obtain exact estimates of best approximation of some infinitely
differentiable functions. #1995 Academic Press. Inc

1. INTRODUCTION

Let 4,(F),. 1 <p< oo, denote the error in approximating to Fe L,(R)
by entire functions of exponential type ¢ >0, i.e.,

AAF), = inf |F—gl, g

g€ B,
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348 GANZBURG AND LIFLYAND

where B, is the set of entire functions of exponential type o. Here R means
the real axis. Let us put

In this paper we shall study the rate of 4,(F), for some classes of func-
tions. Our initial aim was to find the exact order of decrease of A,(¢; ,),,
where

@, =Ix"expl—A|x] %), AeR, a>0, 4>0,

is the classical infinitely differentiabie function. This problem for polyno-
mial approximation in L (—1,1), A=0, «=2, was posed by Bernstein
more than 40 years ago. A lower estimate of 4,(¢, ,), may be obtained in
a standard way [8] but for a long time we could not find the efficient
upper estimate. Much attention has been given to upper estimates of
A (F), in the literature. A Jackson-type theorem

AAF), < Coy (Foo ), (1.1)

where w; ,(F, 1) is the integral modulus of smoothness of order k=1 has
been obtained by Bernstein [2] for p= o, k=1, whilefor | <p <o, k=2
the estimate (1.1) has been proved by Akhiezer [ 1]; A. F. Timan and M. F.
Timan [ 17] have generalized this result to any k > 2, 1 < p < oo. There are
many generahzations of (1.1) in different directions (cf. [16], [13]. [6]).
This estimate is efficient for some functions of finite smoothness but gives
no good results for infinitely differentiable, or analytic functions [7].
Besides, there is no general method for computation of w, ,(F. o '), and
this problem is very difficult for many individual functions, especially in the
case | < p < oo. For these reasons, in many cases estimates of 4,(F),, using
the Fourier transform of F, are more efficient than (1.1).

The known Markov-type theorem proved by Krein [9] and Nagy [12]
makes it possible to find 4,(F), for some functions with regularly
decreasing £ In particular, if Fe L,(R) is a continuous even function and
F.(1) is 3-monotonic (that is, each of the first three derivatives preserves a
sign) for 1> a,, then

- E((2k+1)o)
. _ 1k LeMler T )Y
A,(F), =(8/n) Z (=D 2k +1

k=0

, o> 0.

This theorem is efficient only for very special classes of functions. For
instance, ¢, , do not satisfy the conditions of the theorem. It follows from
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Hausdorﬁ"—}/oung’s theorem [20] that for a continuous function Fe L {R)
such that Fe L{UR)N L (R), g=p/(p—1), 2<p< x,

i

.t 1,
Aﬂ(F)p<C<j (lF(r)l"+|F‘(—r)l")dz> : (1.2)

There is no analogous inequality for 1 <p <2,

The aim of the present paper is to obtain the efficient estimates for
A,(F}, in the case 1 < p <2

Our main result is given in the following inequalities which are essen-
tially the basis for other results of the paper:

AR, < F— Q,,(F)”L|(R>

d? .,
)

<C<|E.<a)l + |£(20)| +£:‘ rb—: F(o-+r)‘ dt) (1.3)

where F is an even function satisfying some conditions, and @, 1s a linear
operator of approximation. Using (1.3) and properties of Q, we shall
obtain an estimate of A,(F), for 1 <p<2. These results are stated in
Section 3.

The proof of {1.3) is based on new estimates of Fourier transforms in
L,(R), which are proved in Section 2. These results are integral analogues
of some inequalities due to Bausov and Telyakovskii [15], and they are
interesting in themselves.

At last, as an application of our results, we shall obtain exact upper
estimates for best approximation of some infinitely differentiable functions,
like ¢, ,. These inequalities are proved in Section 4.

Note that throughout this paper C will denote different positive con-
stants not depending on the essential parameters =, o, etc., on the variables
X, 1, N, etc., and on the functions f, F, f. F.

2. ESTIMATES OF FOURIER TRANSFORMS

Many different conditions for coeflicients of a trigonometric series that
yield the integrability of this series are well-known. Among them are the con-
ditions due to Boas-Telyakovskii, Fomin, Sidon-Telyakovskii, C. Stanojevic,
Moricz, Buntinas, Tanovic-Miller and others (the lists of references in [4],
[11] give a comprehensive bibliography in this field). Different conditions
of integrability of Fourier transforms are well-known as well. But those
corresponding to the afore-mentioned conditions for series were almost not
investigated till recently. Perhaps the paper of Trigub [ 18] was the first
where the systematic study of such relations was begun. In the paper of the
second author [10] an integral analogue of Boas-Telyakovskii conditions
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(see, e.g., [ 15, (1.2), (1.3)]; these conditions are the strongest in the range
of such results) was established as follows (see Corollary 1 in [10}):

THEOREM A. Let [ be u locally absolutely continuous function on [0, oc),

and m __ ,  f(x)=0. Then for every y>0
S =031(p) (2.1)
A 1 /=
Syy==f <“> +0:7:(3) (2.2)
yo\2y

where |0, < C, and for j=1,2

L

LI l}’,,-(y)la’ySJ “fu—x) = futx

x) dx | du.

0] dx + j

0 0 X

The following theorem is very close to Theorem A and its proof is
strongly based on it.

THEOREM 1. Let f be a locally absolutely continuous function on [0, o),
and lim f(x)=0. Then for every >0, y>n/2z

N = 4L

. sin Zy . f..n _
Syy= y <f<f~b>—1<~+b>>+0ﬂu) (2.3)

where || < C, and

oL

| inoinar<] " ircotas

.(-
0
f |

0

Theorem 1 generalizes another result of Telyakovskii [15, Corollary 11].
Let us postpone the proof of this theorem. We need some auxiliary results,
similar to those obtained in [15].

P

dx

dx

[min[u,e‘l. iz w2 f"(u —X) _f'(u + x)
) R

b

f“e”z Sctu—x)—fz+u+x)
0 X

du+ | f(z)].
(2.4)

dx

LEMMA 1. Let g be a locally absolutely continuous function on [0, o).
Then the following inequality holds

ff

dx

fm: glu—x)—glu+x)
0 X

sm3f‘ugunm
0
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Proof. We have

(‘ J"@ &Lf—,\‘)—gtu+.\') de| du
Yo 0 X
o w2y pu+x
:J. j il [ g'(t)dt| du
0 0 X Yy
> PR YT x
< ! In— = tlg :
.[0 did J 0] I = e m3fn lg'(1)] di
This completes the proof. |
Consider two auxiliary functions
Jx) 0 \<3
3xN o 2z
Blx)= <2_?\>\/(-\’)~ 5<.\’<—3—.
0 2
R X > 5 o

and

A ‘)_{f(:—.\‘)—[)’(:—x), O0gsxy<z,
Av= 0, X >

Evidently, fix)=f(x)+y(z—xjon [0, z].

LEMMA 2. Let f be an absolutely continuous function on [0, z]. Then the
Jollowing inequalities hold:

[ penasc ([ irwraien). es)
/ Yo

o

fl QAU il AUREY dx du+J (m ylu—x) —yluty) dx| du
[ 0 X 0 Yo A
o min{ /2, (2 — )2y ' vy — £ -
<C<J ] Slu——futx) L,
0 0 X
s [l Lo ) (26)
0

640/8373-5
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Proof. Let us denote

W N

<x<

W n

Flx)=

0, otherwise.

We are not able to apply Lemma 1 to F immediately, because F may be
not absolutely continuous in the neighborhoods of z/3 and (2/3)z. Let us
consider a continuous function F,(x) on [0, cc) which coincides w1th F on
[z/3, (2/3)z]. vanishes outside [ z/3 —¢, (2/3)}z + ¢] for sufficiently small &,
and 1s linear on [ z/3 —¢, z/37 and [(2/3)z, (2/3)z + ¢]. Since F, satisfies the
conditions of Lemma 1, we obtain

0 0 X
<In j 1IF(1)] dt
<i %? L aranae|r (Sl (52)]
<In <2 dt+l J /"(t)dt-+—f(:)l

+‘—j~3f t)dt+f:)|>

<sm3([Cirondce o) 27)

But one can calculate easily that

I,

LN

fz (F=F)(u—x)—(F=F)u+x)

X

<c(ls(5)+ G )l)«:(fo"i/"<r>;dr+\f<:>|>. (28)

Thus we obtain from (2.7) and (2.8) that

L

J'“r"z Flu—x)— Fu+x)
[ X

dx[ du < C<f0 Lf1(6)] dt + If(:)|>. (2.9)
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Let us denote B'(x) = f'{(x)+ F(x), ie,

Jx), 0<X<§
Bx)= <2—ﬁ)_/"(x). fen<Z, (2.10)
z 3 3
2
0, X>-=z.
X >3
We have from (2.9) and (2.10)
. 202 )” — X} = 4 X
‘ Muﬂ dx ! du (2.11)
Yo E) X

P

/2 B' — X —B, X :
[ ("+\]dx'du+C<j l_f’(x)ldx+|_f‘(:)l>-
0

<

Y0 0 X

It follows from (2.10) that B'(u—x)=f"(u—x) for u<z/3, and

Su+x), .\'sg—u,
Bu+x)= 3 )
(2— (Mj"-\)> S (u+x), .\‘>§—u.
Thus,
jfx le(B'*:fW(u-x)-(B'—:fq(u+nY)dY du
O

0 X

i3

du <J /(x| dx.
° (2.12)

o

Let z/3<u<(2/3)z. Then it follows from {2.10) that

J-MVJ <§ (u+x)_ l) _f_E.Ll\iﬁ dx

(2_3(u~“,\')>‘/7(u_x}' y<u—
B(u—x)= }

S u—x), X>u—

(WS R

W]ty
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and

This yields

dx

J“i«‘*": ‘J‘"Z B{u—xy—B'(u+x)

0 X

dx| du

7%
X

(»(2‘,“3):

i3

N ( 3u> | [1u—=x) = f'(u+x)

dx

J.u— =2 3f (Ll _ '\-) dx N <;;—u— 1> J.us“_ f (Ll — _\-)
z o) w - /3 X

0 P

smingu/2. 253 ) 3 " + X 3 rui2 N X
+J 3 utx) dv+[2-2% J Slutx) dx| du
o Jod oy (2/3)z - u X

3 S1273) A2 02
S:J %J |/ (1 — x)] c/x+J [/ (u+x)| d.\} du
I3 ( 0

<[ s

Thus, we obtained that

=3 0 X ’
(23 w2 f" Yy — ' - =
SJ [ L(*u——llf(u-l—}—l dxi du +J L/ (x)] dx. (2.13)
/3 Yo X 0

Let u > 3. The formula (2.10) gives us that B'(# + x) =0 and

0, x<u—

Bu—x)= 3
(2— (u*'\)>f’(u—,\‘), X>u——- =z
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Hence
o cul2 B' —x)— B’ X
| ’J Bluz 0 =Bt ) 4] 4,
(2/3): 0 X
« a2 Ny — x Ny — x
ZJ J (2_ (u \))f(u U
(2:3) u- (23 pog X

adzid 12 .z
du | Lf"(u— x)| dx<2J )] dy. (2.14)
jod 0

w- (273

Collecting the estimates (2.12)—(2.14), we have

2 Bliy—vx)— B v
(u—x) (u+\)d.\' du

o

)

X

42i3- “u: fu—x)—f"{u+x) dv
0 Y '

J,

du+ 4 f L1 ()] d.
0

123 pui2 " oY — -
| ‘ flu=mx)—flutx) dx| du
=2 iz w2 X
3 2273 a2 . P
<= j duJ (U (u—x) + |/ (u+x)| dx < ‘ Lf/(x)] d.
~ Yz {Z - 1)2 0
So we have

«2 By~ x)— B'(u+ x)
J dx
0 X
smin{zi2, (2 — w)i2) f"(u — .\') _A/"(u +i) d\.
X ’

du

oo

l

du+s fo [f7(0)] dx.

p(2:/3)z

<
4]

|

0
Taking into account (2.11) we obtain that the inequality

S ACE Ry AU SV

J 0 X

du

12/3) Amin(e2 0z - u)2) f'(u__\-)_f"(u_f_x)
< ‘ " dx | du
Jo Jo X

+ C(Q 0] dx+ l./‘(:)l)

holds.
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Now we have

v zi3 A2/3) 3Ix )
[ o< 1o | (2--‘) | ] dx
0 0 oy

I z

A2/

+ J} [f0x)] dx

[RINRVS]

<2 | 1/ de+ /().
0
So we have proved (2.5) and (2.6) for . The corresponding estimates for
y are similar to those for . Lemma 2 is proved. |
We are able now to prove Theorem I.

Proof of Theorem 1. We have

v -

J f(x) cos xy dxy = [

Jix)cosxydy+ [ ’ f(x) cos xy dx.
0 0 b=

After simple calculations we obtain for the last integral

ot

f(x) cos xydy= J
(

’ Jlz+x)cos(z+x) pdx
4]

=Cos zy J J(z+4 x)cos xydx
0

—sin zy j flz+ x)sin xy dx,
4]
and it suffices to apply Theorem A to both integrals.
Furthermore, we have for the interval [0, =]

j‘: S{x)ycos xydy= J: Blx)cos xydx + jJ ylz—x)cos xyp dx.
0 0 o

Now, we apply (2.1} to the first integral on the right-hand side. And for the
second one we have

_(: HAz—x)cosxydy= J.: y(x) cos(z—x) ydx
0 0

=CcosZy f y(x) cos xy dx + sin zy f y(x) sin xy dx,
0 O
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and again we apply (2.1) to the first integral, {(2.2) to the second one. It
remains to apply Lemma 2 to the estimates of the remainders obtained.
Theorem 1 1s proved. |}

The following result may be treated as a corollary to Theorem 1 and a
generalization of one result of Bausov and Telyakovskii (see the corre-
sponding prototypes for trigonometric series in [ 15, (3.72)-(3.74)]).

THEOREM 2. Let [ be a locally absolutely continuous function with
fim f(x}y=0, and

AN
Jﬂ X () dx < oo,
0

Then for every = >0, the relation (2.3) holds by

I,

FiSes

(X I:—'\.l S .
‘——+—’\_—"|f (X)) dx.  (2.15)

L dy <LAON+ Lfiz) ] + |

0 z
In addition,

JH)L I£(x)] dv < C(L '-f(—”—'\‘)?/(:-h\')‘

s+ |

Lf7(x)] d.\'). (2.16)

Remark 1. The main condition in Theorem 2, that is the integrability of
x| f"(x}], 1s the well-known condition of guasi-convexity of the function f
(see, e.g., [ 3. p-248]). This class of functions play an important role in
different branches of analysis.

Proof of Theorem 2. Notice that the conditions of Theorem 2 yield
lim J/'(x)=0. Indeed, it is enough to integrate by parts the integral

XN+

[(')’ xf"(x) dx and apply simple computations to the result.
The following relation may be verified immediately

f =" h00+ T =2 [ na

J' (z—1) £ (1) dL. (2.17)

Ry

ty ) =
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Therefore, we obtain for each x, 0 < x <z, that

ot + e+ [ =D 2.18)

MY z

In order to obtain (2.15) we have to estimate all the terms on the nght-
hand side of (2.4).
Using Lemma 1 for g{#)=f"(z+ 1) we have

J‘ |
0

dt

Pz Seru—0—flz+uty)
0 t

du<21n3 j‘f [F7(x) (x—2z2)dx

Sx(x—z)
< WL .
<2n3 [ S )
(2.19)
Furthermore, we obtain
az min{a/2. (= —u)'2) " vy — -
Nl Sl —Sluty) dx‘ du
0 O X
z minie/2, (2 - u)i2) ofy putx
<) d — ) dt
-[) ! J() A J‘u X ‘f { ” ‘
r2i4 2 u
= () dt In ——— d
Jo CAUIE J.<2;‘3)1 " 2 u—1¢ “
(3/4) - =2 u
+ (0| dt In fu
j..\-m /7@ Jtz,'zu 2 ju—1 ‘
p(3/4) w (2t +2)/3 I—Uu
+JM /7 (2)] dt j In 5= d
z (2r + )73 c—u
+ () dt 1 du. 2.20
'[33'4): ‘/ ( ), ‘ ‘LI— v n2 [f—_ul “ ( )

Four inner integrals on the right-hand side of (2.20) may be calculated
directly by the integrating by parts. For example, for z/4 <1< z/2 we have

j«(?_l#—:)f} T —U 3z

" In T du=(z2-0)In2(1 =2t/z2)+(z—t) In TR (2.21)

The first summand on the right-hand side of (2.21} is negative, the
second is less than (z —¢) In 3. Since 1/(z+1)> ! for the range of ¢ con-
sidered, the integral in (2.21) may be estimated by C(¢ |z —¢t|/(z + 1)). Other
estimates may be obtained in a similar way.
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This yields the following estimate:

- mintuf2, (2 —uy2y 7 — vy f -
J J { W2 M —x)— a4 x) vl du
o (Yo X
SHZ—t) L,
<CL el U (2.22)

Now we have to estimate {7 | f'(x)| dx.

r <§> [
+J ’f ’ (5) + f Iy di

<z 'f’ <5>' + fo PO dr + j (z—2) 1)) dr. (2.23)

~i

[ 1o de= .

0

dx

dx

Differentiating the identity (2.17), we obtain

0 /2

:f" <%>:/‘(:)‘f‘[(o)—f—J.:’~ r/‘ll(r) dr_J.: (:—f)/”([) dr. (224)

Furthermore,

I "

Jﬂ_x 1) dtl <[ =i dr

\

/()] dx = j dx

<2 f ’(:’;’) (7] dt (225

Combining inequalities (2.4), (2.18), (2.19), (2.22)—-(2.25), we obtain the
estimate (2.15). In order to prove (2.16) we need the following estimates.

) )

< [ Az =x)—=flz+x)|

1] X

pr

L.

dy

dx, (2.26)

64083 :3-6
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J~ 2z
4]

f ’ flx)cos xy dx

0

dy

a2z 1 A x
=J - J S(x)sin xy dx | dy
0 ¥ Yo
a2z iy . 2z ] o
<J ll}' J f.f'(_\’)] xdx +J —5 J ./'n('\_) cos xy dv dy
0 @ o Vo Jany
T (x) ; E - -~ o .
<EJO |.f (.“)Iah+2 J: (x —2) |f"(x)] dx
I XY=z, )
<C (Jo L f7{x)] dx +J: g Lf7(x)) d.\). 2.27)

Using (2.3), (2.15), {2.26), (2.27), we complete the proof of Theorem 2. |}

The following statement provides us with a generalization of Theorem 2
to functions with derivative having a jump discontinuity at one point.

CoRrOLLARY 1. Let f' be a locally absolutely continuous function on [0, )
and (z, o0), > 0. Suppose, further, that | f'(z+ ) < e, lim_ , f(x)=0, and

JN:A XX dx +J‘ - XM dx < o

Then

s

[T 1iravc(inon+ e+ [ LR g

0 X

+J0 }({‘i\—) ARSI d.\‘+£i '\'f_::} L (0] d,\->.

X
(2.28)
Proof. Let us put for xe[z—¢, =+ ¢], where ¢ >0 is small enough,
g(x)zﬂ:#ﬁ('v_:)3+w(x_:f
£ 4¢
_Sz+e)+ [ (z—¢) (x—2)—e S(z+e)—[(z—¢)
4 4
S —fle—e) L flere) - fle—e)
a0 (x—z)"+3 i (x—~z)

+f(:+6)42rf(:—6)_’
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and g(x) = f{x) otherwise. It is evident that g satisfies the conditions of
Theorem 2. So we have,

J'O |/(\1d\<j ) dx + L"|f(\>a (x)| dx

(aﬂ:—;»<ﬂ:+xndY

O+ 1z X
X

(
f B ‘("_' ()] dx
+

i o )y >uu)+cwmm—¢un

Hfiﬁ:ﬁlmuwhﬂ

4+ X
+(ﬁ”\ﬂ:~X)—gt—X)tm:+xt;H:+xHdY

0

+Cf

-

+ ‘.L | f(x) — g.(x) dx

Y0

=Cl(e)+ CL{e)+ CL(g) + Cly(e) + L(¢€).

We have /,(¢) < 1,(0), and CI,(0) coincides with the right-hand side of
the inequality (2.28). It now remains to prove that lim, ., f{¢}=0,
7j=2,3,4,5

It is easy to see, that

(z+e)+ flz—¢ No+e)—[f(z—¢ .
M= |0 Sl e

1 : .
<3¢ Sup |/ (x) l+ flz+e)=2f2)+ fliz—e)l,
and the first term tends to zero with ¢ — 0 and the second one is small by
virtue of the continuity of f.

N CRI R K CE BN

LTre x|z =y
Iz(“—j:n{: i 767
Sz—a)=fz—&) flot+e)—flz—¢&) . = )
+ 5 — 5o 3(x—e)| dx
<de sup |f(xN+ | flz+e)y—flz—e),

xe[0, x)
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and the same reasoning is true.

Sz+e)+ /" (z—¢) @
4¢? ’

ey < [ HEZDZSE RN av+|

o X

AR e A G NP M C IR M Il N

4e 4

__f'(:+£)—;/'(:—£) S flz+e)— flz—¢) N é
4e” 4¢ X

and the first integral is small because [ ((]f(z—x)—f(z+x)|)/x)dx
converges and the second one may be estimated as I;(¢e).

Finally, it remains to estimate [(¢). Let us denote h{x)=f{x)— gl{x).
Notice that supp h <[z —¢, z+¢], A is a differentiable function on [, o),
and

Varg <[ 1y [ 0ol dx
ER o+
+8 sup |f'(x)<C (2.29)

xe [0, x)

where C does not depend on ¢ Thus, /_ is an entire function of exponential
type z +¢, and we are able to use the Wiener inequality [19, p. 81]

/}(( " )' (2.30)
Z+¢

of

o F n C
15(5):j |/1‘.(.\')|a’.\'<:—_+_-; >

0 -

It follows from (2.29) that for |n| >0

i ()

_le+e)p
|n]

JA B W ((z+¢€)x) sin nx dx
0

2

- 2 2n
= EEEN ™ (= 4 1) sin v di
0

oIl

<Cn3% (231)

where C does not depend on ¢ and n.
- R e A R AT S R A it
2¢ 2¢*

<de sup  |f{(xN 1Sz +e)— flz—e)l,

xe[0, x)

+ dx

I(x—¢)
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Denoting by N=[¢'?] and using (2.30)-(2.32), we obtain

h({;)\Jr )3 ﬁv(ziJ)

n| >N
<C<(2N+1)s+ Y n"2><C\ﬁ.

|| >N

N

15(s><c( 5

n= —N

This completes the proof of Corollary 1. |

3. ESTIMATES OF BEST APPROXIMATION

Let F be a function satisfying the following conditions:

(1) Fis a continuous function on R;

(2) FeL\(R), FeL(R);

(3) F.(x) and (d/dx) F.(x) are locally absolutely continuous functions
on [0, o) such that

i
0
By § we denote the subset of L (R) of all even F satisfying the condi-

tions (1)—(3).
Let us consider an operator Q.. S — B,

4

7= £

dx < o0.

Q.F, y) :% J (E(x)~ E(20 —x)) cos xy dX.

0

THEOREM 3. If Fe S, then

AJF) <IFC) = QF, M ym)

< C<|Fj(a)| +1F(20)] + j Ty

Q0

dhz F(x+0)

d.\'), (3.1)

dx
Proof. Let us denote

£ .)_{FZ»(ZO’-—_\‘), 0<x<o;
JRVAEN" xX>a.

We have
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It is clear that f satisfies all the conditions of Corollary ! for z =g. Using
(2.28) and (3.2) we obtain

f’ l_f‘;.<,\->w,\-<c<\é |+ 1£.(20) |+j bl K PN PN
0 0 O+Xx dx?
* X{x—o0) d' . )
+-[(, o+x |dod L) d'\>
R {?
<C<IF,(0) | 20)!+J v|— F(x+0) dx
0
+L (x —a) e E.(.\‘)D
<C<|F( \+|F(2a)\+J F(\+a) dx>.

In order to prove (3.1} it is enough to observe that conditions (1} and
(2) imply the identity

S

‘QH(E '\A): /:(\4)

Theorem 3 is proved. §

The following result is a generalization of Theorem 3 to the case of
approximation in L,(R), I <p<2.

COROLLARY 2. If Fe S L,(R), then for 1 <p<2

- p

s 1
(F(x))? dx>

(2ip)--1
a’x) . (3.3)

AP, <IFC) = Qu(F, )l < C(J

a

’)

<;F (o) + | £(20) |+f E(a+ x)

Proof. Observe that if Fe L,{R), then

I

IEC) = @ (F - My = C< (F(x )dx+fL(F',,(Za—,\-wd,\-)

o

Cj (3.4)
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Now, using Hoélder’s inequality we have

W) = Qu(F N =J.R |F(x)— Q. (F, x)|> 7 |F(x)— Q(F. x))* 2 dx

SUFC ) = QoF i VFC ) = O (F ) -
(3.5)

Combining {3.1), (3.4), (3.5) we complete the proof of Corollary 2. |

Remark 2. Periodic analogues of Theorem 3 and Corollary 2 are estab-
lished in [8].

4. ESTIMATE OF BEST APPROXIMATION OF
SOME INFINITELY DIFFERENTIAL FUNCTIONS

Let us put

(x) {.\"" exp( —Ax %), x>0
. X =
D a0 0, v <0,

@i (X)=(sgnx)} |x|" exp(—A [x] ), =12,

where 2> 0, 4> 0, 2 R are some constants.

THEOREM 4. If 1 <p<2,0>0,i=0,1,2, then

A9, , ), < Co™ exp( — Mg™'' +)), (4.1)
where
m, = —M. M= 4+a "WA)V*% cos il . (4.2)
! 2p(1 + ) 201 +a)

For the proof of the theorem we need several auxiliary results. We first
will find the asymptotic behavior of the Fourier transform of ¢, ,, for
/< —1. Then we will extend this result to any A

Let C, denote the complex plane, cut along the negative real axis; let =#
be the branch of this function in C, which takes positive values for real
>0
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LEMMA 3. If A< —1, then for y—> 4+

o

J zfexpl — Az *—~izy) dz
0
=Cy (2442 +2)/2(] +x)
xexp( — (1 +a Y Aa)l/ T2 yriltoolm2lraly ] o o(1)), (4.3)

Proof. Let us denote
:0 — (Aa)l/’(l+1l J, - 1/01 +1\€— {200+ )

Igr=1{zeC, :z=pz,, 0<p <R}, R>1

FR={:€C+2[:]=R,— <arg:<0}

T
2(1 +a)

D=1zul0, R} T

The function f(z)=:"exp(—Az*—izy) is analytic inside the curve D,
and lim,_ ., R max,., | f(z)] = 0. Therefore, we obtain

J’ fl2)d==0, lim j | /()] 1dz) = 0. (4.4)
D

R— +u I'n

We have that |, f(z)d= coincides with the right-hand side of (4.3). This
fact for A=0, 4 =1 was proved in [5], formula (7.42). Note that there are
several misprints in the formula but the proof is correct. For A < —1, 4 # 1
the proof is analogous. Therefore, (4.4) implies (4.3) and Lemmal is
proved. ||

In the case 1> —1 the functions ¢, , ; do not belong to L (R), and we

shall use another approach.

LemMma 4. We have
(P()ma: oly)= Z C‘j(p).~m - olX) (4.5)
j=0

where C,, 0 < j<m, m=0,1, .. are some constants.

The identity (4.5) may be verified easily by induction on m.
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LEmMMA 5. Let AeR and k=[|A|]1+2 Then there exists an entire
Junction g, of exponential type 1 such that ||@, . o— goll 1, m) < 0. and for
all y>1, m=zk

J (@1 0lX) = go(X))e ™ dx=i"y *"'f P o(x)e Ty, (4.6)

Proof. It follows from (4.5) that @) (e L(R) for all m=k, k+1. ...
In virtue of Jackson’s theorem [16, p.260], [6] there exists a kernel
G.eL(R)ynL,(R) such that a convolution gy(x)={(¢; , % G)x)
belongs to B, g\ e L,(R), m =k, and

(m)

o 0~ 86" 1y S C I8 yys m=0,1, .. (4.7)

Integrating by parts and using the Wiener-Paley theorem [ 14, p. 13] we
have for y > 1, m=k

J‘R (@, 2. 0(X) —golx))e™ Yy

=(=0 "y" f (@30 o(x) — g5 X))e ™™ d

sy —m {n1}

="y J Pl a(x)e ™ dx.

This proves Lemma 5. |}
Now we are able to prove Theorem 4.

Proof of Theorem 4. Let us put

F(\,)_{(/’;q 2(x), A< -3,
. (/)/17( ) (g()( )+20{’_\)) A>—3s

where g, is the same function as in Lemma 5. For o2 1, 1 <p <2 we have
‘4U(F)[):An((pi.1v2)p' (48)
It follows from (4.3), (4.5) that for i< -3, 0</<2, >0

d'F(y
dy'

)j (ﬂ,{+/ N ()( \) -~y d.\' < Cl.nn i+ x) exp( _Mylu‘l +1;)
(4.9)

where ni, and M are defined by (4.2).
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In the case A= —3, 0</<2, y>1 we obtain from (4.3), (4.5), (4.6)

d'F(y)
T.[ < JR N, w0lX) —golx))e ™ dx

=(l+o(1) y= "+

J xl(p(k + 2)('\.") —ixy (1,\'
R

Ao, O

=(l+o(l)) y-*k+2

J Dol —(hk+2x1 + a0 :x‘()(-\‘)() S dx
R

<y M E R exp( — My oy, (4.10)
Thus, (4.9), (4.10) yield the relation

d'E(y)

dy’

’gc}»"“ M@ exp(— My* 4+ y>1, 0</<2. (4.11)

It follows from (4.11) that F satisfies all the conditions of Corollary 2. It
remains to estimate the integrals on the right-hand side of the inequality
(3.3).

Using (4.11) and the asymptotics (¢ >0, t— +o0), which may be
obtained by integrating by parts twice,

2 —1
J X tem N dx =y T e (1 +ﬁ~———~+ o(t '2)>
' /U

we have

. I lip
( (I'}('(\_))Z d,\'> ! < Co.(ln” + L+ oKl lJ‘p)(, 2M(L Is“p)ﬂ‘ (412)

YT

J’» ) d*E(x+0) )
X |[————| dx
0 dx”
5 A
* d F.(y)
= J (}" —a) E)
a (1}'-
< C <J * yml(l + kx4 16’ — My dy — g J.J_ _V"”( 1+ a)ix - l‘y’a(, — My dy>
PRl gl
< Co™* Mot + 2. (413)

Collecting now (3.3), (4.11)~(4.13) we complete the proof of the
inequality (4.1) for i=2.
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In order to prove (4.1) for i=0, and /=1 we observe that

@ X)=Ap, | LalX)—ae, (. a(X)
P aolX) =@, (x)+ (@, , 2(x))/2.

(4.14)

Applying (4.14) and (4.1) for /=2 we obtain
An((P),, ol )P < Co~ IA,,((PI) .l ),7 < Co,nlpcfﬂlqm‘xum;
Ad((P/Z, x, O)p < %(An((p/l a, I)p + Aﬂ((PZ, x, ZJ/J) < CO-I”F‘) ‘unﬂ‘”+1}'

Theorem 4 is proved. |}

Remark 3. The inequalities (4.1) holds also in the case 2<p< oo, It

may be proved by using (1.2). Finally, we note that the estimates (4.1) are
precise for all p, 1 < p < o, with respect to the rate of approximation (as
o 0), Le.,

AP 40)p = 0™ expl — Mg™+20y,

These inequalities are established in [8].

o

10.
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