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Under some assumptions on a function F and its Fourier transform f we prove
new estimates of best approximation of F by entire functions of exponential type (J

in LrllKll, I ~ I' < 2. The proof is based on some inequalities for fin L I (IR I which
may be treated as generalizations of results of Bausov and Telyakovskii. As an
application we obtain exact estimates of best approximation of some infinitely
differentiable functions. '1995 Academic Press. Inc

1. INTRODUCTION

Let A"(F),,, l.,:;;p":;;oo, denote the error in approximating to FE LI'(IR)
by entire functions of exponential type (J > 0, i.e.,

A,,(F)1' = inf I!F - gil Lpll~1
gE B(I
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348 GANZBURG AND LIFLYAND

where B" is the set of entire functions of exponential type a. Here IR means
the real axis. Let us put

t(t)=F;(t)-i~(t)=fer F(x)e-ix'dx.
'(l

In this paper we shall study the rate of A"(F),, for some classes of func­
tions. Our initial aim was to lind the exact order of decrease of A ,,( qJ ).. ~ I",
where

). E IR. 0: > O. A > 0,

is the classical infinitely differentiable function. This problem for polyno­
mial approximation in L f. ( - I, I), ). = O. 0: = 2, was posed by Bernstein
more than 40 years ago. A lower estimate of A,,( (p ).. ,)" may be obtained in
a standard way [8 J but for a long time we could not find the efficient
upper estimate. Much attention has been given to upper estimates of
A,,( F)" in the literature. A Jackson-type theorem

A,,(F),,~CWk.,,(F,a I), (J.I )

where wk.I'(F, t) is the integral modulus of smoothness of order k ~ I has
been obtained by Bernstein [2] for p =00, k = I, while for I ~ p ~ oc, k = 2
the estimate (1.1) has been proved by Akhiezer [ I J; A. F. Timan and M. F.
Timan [17J have generalized this result to any k > 2, I ~ P~ 00. There are
many generalizations of ( 1.1 ) in different directions (cf. [16], [13 J, [6]).
This estimate is ellicient for some functions of finite smoothness but gives
no good results for infinitely differentiable, or analytic functions [7].
Besides, there is no general method for computation of (rh.,,( F, a I), and
this problem is very dillicult for many individual functions, especially in the
case I ~ p < en. For these reasons, in many cases estimates of A"(Fl,,, using
the Fourier transform of F, are more ellicient than (1.1 ).

The known Markov-type theorem proved by Krein [9 J and Nagy [ 12]
makes it possible to find A ,,( F) I for some functions with regularly
decreasing t. In particular, if FE L I (IR) is a continuous even function and
F;( t) is 3-monotonic (that is, each of the first three derivatives preserves a
sign) for t > all' then

This theorem is ellicient only for very special classes of functions. For
instance, qJ).' do not satisfy the conditions of the theorem. It follows from
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( 1.2)

Hausdorff-Young's theorem [20J that for a continuous function FE L d fR)

such that FE L 1( fR) n L,,(fRl, q = p/(p - I I, 2 ~p ~ oc,

A,,(F)f' ~ C (J"f (IF(t)i" + IF( -f)i"l dfY"·
There is no analogous inequality for I ~ p < 2.
The aim of the present paper is to obtain the efficient estimates for

A".(FII' in the case I ~p<2.
Our main result is given in the following inequalities which are essen­

tially the basis for other results of the paper:

A".(Fl) ~ IIF- Q,,(F)II LI(~I

~ C (11;(0")/ + 11;(20-)1 +r fl :f: 1;(0- + f) Idf) ( 1.3)

where F is an even function satisfying some conditions, and Q" is a linear
operator of approximation. Using (1.3) and properties of Q" we shall
obtain an estimate of A".(FII' for I < p < 2. These results are stated in
Section 3.

The proof of ( 1.3 I is based on new estimates of Fourier transforms in
L) (IR l, which are proved in Section 2. These results are integral analogues
of some inequalities due to Bausov and Telyakovskii [15], and they are
interesting in themselves.

At last, as an application of our results, we shaH obtain exact upper
estimates for best approximation of some infinitely differentiable functions,
like qJ!.. 7' These inequalities are proved in Section 4.

Note that throughout this paper C wiH denote different positive con­
stants not depending on the essential parameters ::, 0, etc., on the variables
x, .1', N, etc., and on the functions f F, l F.

2. ESTIMATES OF FOURIER TRANSFORMS

Many different conditions for coefficients of a trigonometric series that
yield the integrability of this series are well-known. Among them are the con­
ditions due to Boas-Telyakovskii, Fomin, Sidon-Telyakovskii, C. Stanojevic,
Moricz, Buntinas, Tanovic-Miller and others (the lists of references in [4 J,
[ II J give a comprehensive bibliography in this field). Different conditions
of integrability of Fourier transforms are well-known as well. But those
corresponding to the afore-mentioned conditions for series were almost not
investigated till recently. Perhaps the paper of Trigub [18 J was the tirst
where the systematic study of such relations was begun. In the paper of the
second author [IOJ an integral analogue of Boas-Telyakovskii conditions
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(see, e.g., [15, (1.2), (1.3)]; these conditions are the strongest in the range
of such results) was established as follows (see Corollary I in [10]):

THEOREM A. Let f he a lucally ahsulutely continuuus functiun un [0, (XJ ),

and lim, ~ +I f(x) = 0. Then for every y > °
(2.1 )

(2.2)

where IOJ I~ C, and .Ic)r j = I, 2

Ief

l}'j(Y)I(~v~r 1f'(X)ldx+f
f If/2

f'(u-x)-f'(u+x) dxldU.
[) [) [) II X

The following theorem is very close to Theorem A and its proof IS

strongly based on it.

THEOREM I. Let f be a locally absolutely continuous function on [0, if)),
and lim\~ +x f(x) = 0. Then for every: > 0, y> n/2:

, sm :)' (( n) .( n))I(y)=-.v-· f :-2y -./ :+2y +or,(y)

where 101 ~ C, and

L~2C Ifl (y) I dy ~r If' (x) I dx

+[C I rminlll/2.1: 11)/21 f'(u-x)~f'(u+x) dxl dx
o '0 X

(2.3 )

I
"~ 11"/2 f'(:+u-x)-f'(:+u+x) I .

+ dx du + 1f(:)I.
II II x

(2.4)

Theorem I generalizes another result of Telyakovskii [15, Corollary 1].
Let us postpone the proof of this theorem. We need some auxiliary results,
similar to those obtained in [15].

LEMMA I. Let g be a locally ahsolutely continuous function on [0, oc ).
Then the following inequality hulds

f. 'ef~ 1["/2 g(u - x) - g(u + x) dxj ~ In 3 [f t Ig'(t)1 dt.
o II x II
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Proof We have

CIj,,,/2 g(~-x)-g(u+x) dxl du
'0 0 x

S"Y IS"/2 dx r"+' ,= 0 0 ~, '" g' ( t) dt tlu

~ rY tlu J'"~.. "/2 Ig'(t 11 In -2~I-u-, tit = In 3 f Y t Ig'(t)1 tit.
'0 ,,2 u-t 0

This completes the proof. I
Consider two auxiliary functions

351

f(x),

[J(x) = (2 - 3;X) f(x),

0,

and

{
f(Z -x) - [J(z - x),

((x) = 0,

Evidently, f(x)=[J(x)+y(z-x) on [O,z].

o~x~z,
x>z.

LEMMA 2. Let f be an absolutely continuous function on [0, .:]. Then the
following inequalities hold:

fY (1!J'(X)I+IY'(X)I)dX~C(r: 1/,(x)1 dX+1f(Z)I), (2.5)
'0 '0

r jf i2
!f(U-X)-[J'(u+X) dxl du+ JY

" 'Ci2
y'(u-x)-I"(u+x) dxl du

o 0 x 0 '0 x

(j': Isminllli2.1:-"li21 f'(u-xl-f'(u+x) I
~ C dx du

o 0 x

+ ( !/'(x)! dx + I/(X)I).

640:'XJ:J-5

(2.6)
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Prool Let us denote

{
~ fix),

F(x)= -

0,

::: 2
~<,.<-"3 '"" .. '" 3 -,

otherwise.

We are not able to apply Lemma I to F immediately, because F may be
not absolutely continuous in the neighborhoods of :::/3 and (2/3):::. Let us
consider a continuous function F;;(x) on [0, oc) which coincides with F on
[:::/3, (2/3):::], vanishes outside [:::/3 - c, (2/3)::: + c] for sufficiently small c,
and is linear on [:::/3 - c, :::/3 ] and [( 2/3 ):::, (2/3)::: + f:]. Since F; satisfies the
conditions of Lemma I, we obtain

ff. IJ'"i1
F;( U - x) - F;( u + x) I I'-"------"--- (X (u

o 0 x

~ In 3nf2

,i
11

= t II'U)I dt + 'I (DI + /In:::)I}
~In 3 (2 fi: 'I

= II'(t)[ dt+ 1-(, I'(t) dt+I(:::l!

+ 1- (/1 f' (t) dt + f(:::) I)
~ 3 In 3 (( I./"(t)[ dt + II(:::)I). (2.7)

But one can calculate easily that

lu
cre Ifuil (F-F;,)(..u-x)-(F-F...c)(u+x) I

-····-dx du
o x

~ c (jI (DI + /In :::)1) ~ c u: If'(t)! dt + 1/(:::)1). (2.8)

Thus we obtain from (2.7) and (2.8) that

r' 1(1 F(U-X)~F(U+X) dxj du~ C(J: II'U)I dt+ If(:::)!} (2.9)
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Let us denote B'(x) = [J'(x) + F(x), i.e.,
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.I'(x),

(
3X).[J(x) = 2-~ /,(x),

0,

We have from (2.9) and (2.10)

j' / 11'''/1 [J'(u - xl - [J'(u+ x) dx Idu
,() '() x

(2.10 )

(2.11 )

.y If"/1 B'(u- \')-B'(u+ ,) I (f: ):( I '.' dx du + C 1f'(x)1 dx + II(:)I .
. () ().\ ()

It follows from (2.10) that B'(u-xl=f'(u-xl for u:(:/3, and

{

f'(u+x l,

B'(u+x)=

( 2 _ 3( u; X)) f' (u + x),

Thus,

j<iJ IJ'"/1 _(B_'_---'....1_")_(u_-_'_')_-_(_B_'----=-I_'l_(u_+_.\_·) dx Idu
() () x

-
x >--u.

3

,:'.1 If'u, (3 ) f(u + x) I <,=j :(u+x)-I·. dx du:(j I.f'(xlldx.
() ." -li - .\ (). (2.12)

Let :/3 :( u :( (2/3):. Then it follows from (2.10) that

{(2 3(u - X)) I" ,- _ ,(u -.\),

B'(u-x) =

.nu - x).

-
\'~u-=-. '" 3'

-
\'>u--. 3'
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{

( 2- 3(U;X)) /,(u+x),

B'(u+x) =

0,

This yields

j
'I.. 2/.1I

0 Ij·II/2 B'(u-x)-B'(u+x)-------dx
oiJ () x

( 3U) 1'"/2 f'(u-x)-f'(u+x) I- 2-- dx du
~ .() x

= (/:n J0 I(' -e/2 3/' (~ - x) dx + C~U_I ) J,:1/2e/, /' (uy- x) dx

j
.tnin1lli2.2eo

III 3j"(u + x) (3U) j.II.... 2. F(u + x) I+ . dx + 2 - - . dx du() = :: 12 ...."1..: l{ X

~~ r. 2

/3\e rr/2

1/'(u-x)1 dx+r2

1/,(u+x)1 dxl du
- en (() () f

~r1/,(x)1 dx.
()

Thus, we obtained that

rOIO 11'"/2 _B_'(_u_-_,\_·)_-__B_'(_u_+_._y) dxl du
0/3 0 X

1'
(2/

3Ie lr"/2f'(U-X)-f'(U+X) I IO
.,

~ I. ~~- .. ~ - dx du+ IJ (x)1 dx. (2.13)
0/.' •().\ ()

Let u~~:. The formula (2.10) gives us that B'(u+x)=O and

2
x> u-:3~'
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j' x,' Ij,,,/2 B'(u - x) - B'(u + x) I
--dx du

12/'1: 0 X

I X,', Ij'''/2" ( 3(U-X)) f'(U-X)1= 2- W
(2'::~1= u -- (2/_,).: ~ X
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~~ rei' du fi2, If'(u-x)1 dx~2r1/,(x)1 dx. (2.14)
- (2./.'):- 11- (2,i::q:: 0

Collecting the estimates (2.12)-(2.14), we have

j'X 1''''i2 B'(u-x)-B'(u+x) I
o .1

0
x dx du

j'12i.1l: Ij'''/2 ('(u-x)-('(u+x) I f:"
~ . . dx du+4 1.1 (x)ldx.

o 0 x 0

If u > ::/2, then

(:.11: Ir:i2

"1/2 /'(U-X)~/'(u+x)dxl du

3 .. 2.:/3 .. 11./2 .. .:

~~ j, du j (1/,(u-x)1 + I/'(u+x)[ dx~ I If'(x)[ dx.
- =/2 \::. -- tll,i2 • ()

So we have

r Iri2
B' (u - x) - B'(u + x) dx Idu

o () X

1

'12i'l: I "minl",i2.1:-"1/21 l'(U-X)-l'(U+X) I I:
~ j . . .~,.- dx du + 5 1/,(x)1 dx.

'0 () x 0

Taking into account (2.11 ) we obtain that the inequality

f 'X IJ'''/2 fJ'(u-x)-fJ'(u+x) dX! du
() 0 x

1

,12,',11: !I,minl"i2.1: "1/21 f'(u-x)-f'(U+X) I
~ dx du

.() '0 x

+ C (J: I.f'(x)[ dx + 1.((::)1)

holds.
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~2 j'C 1/'(x)1 dx+ If(x)l.
()

So we have proved (2,5) and (2.6) for fJ. The corresponding estimates for
yare similar to those for Ii. Lemma 2 is proved. I

We are able now to prove Theorem 1.

Proolof Theorem 1. We have

j'/ f(x) cos x)'dx = rCf(x) cosxydx+ r/ f(x) cosxydx.
() • () • C

After simple calculations we obtain for the last integral

.1

'_1 "f( x) cos X)' dx = J f( z + x) cost z + x) y dx
()

= cos Z)' JI. I(z +x) cos xy dx
()

~ sin zy j' / f(z + x) sin xy dx,
()

and it suffices to apply Theorem A to both integrals.
Furthermore, we have for the interval [0, zJ

r fix) cos xy dx = I= fJ(x) cos xy dx +ff. y(z - x) cos xy dx.
() () 0

Now, we apply (2.1) to the first integral on the right-hand side. And for the
second one we have

r ,'(z - x) cos xy dx = r y(x) cos(z - x) y dx
() 0

= cos zy ry(x) cos xy dx + sin zy IC
('(x) sin xy dx,

o ()
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and again we apply (2.1) to the first integral, (2.2) to the second one. It
remains to apply Lemma 2 to the estimates of the remainders obtained.

Theorem 1 is proved. I

The following result may be treated as a corollary to Theorem 1 and a
generalization of one result of Bausov and Telyakovskii (see the corre­
sponding prototypes for trigonometric series in [15, (3.72)-(3.74)]).

THEOREM 2. Let f' be a locally absolutely continuous function with
lim, ~ +y.f(x) = 0, and

r x If"(x)1 dx <x.
o

Then for cuery :: > 0, the relation (2.3) holds by

.y .y x I::-xl
L2C IF; Lv)1 (Zv ~ Il(O)1 + 1/(::)1 +L :: + x I/"(x)/ dx. (2.15)

In addition,

r IJ(X)ltlx~C(r 1/(::-x)-f(.:+x)1
o 0 x

+ 1/(0)1 + II(.:)I + f' x I.: - xl 1/"(x)1 dX). (2.16)
'f) .:+x

Remark 1. The main condition in Theorem 2, that is the integrability of
x 1/"(x)l, is the well-known condition of quasi-convexity of the function /
(see, e.g., [3, p. 248]). This class of functions play an important role in
different branches of analysis.

Proof of Theorem 2. Notice that the conditions of Theorem 2 yield
lim, ~ +Y f' (x) = O. Indeed, it is enough to integrate by parts the integral
L; xr (x) dx and apply simple computations to the result.

The following relation may be verified immediately

f( x) = .: ~ x f( 0) + ~ f(.:) - .: ~ x r tr (t) tit
- ~ - 0

x .=
-: J (::-t).f"(t)dt.

....\"

(2.17)
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Therefore, we obtain for each x, O::s; x ::s; z, that

1.((x)l::S; 1/(0)1 + If(z)[ + CI(z ~ t) 1/1/(1)[ dt. (2.18)
-0 _

In order to obtain (2.15) we have to estimate all the terms on the right­
hand side of (2.4 ).

Using Lemma I for g(l) =f'(z + I) we have

(' 1(/2 f'(z+u-I)~f'(z+u+t) dtjdu::S;2ln3 f' 1/I/(x)1 (x-z)dx

r
f x(x - z)

::S;21n3 __ . Ij""(x)\dx.
;+x .

(2.19)

Furthermore, we obtain

j': IJminI1i/2. (: -1I1/2 1 1" (u - x) - 1" (u + x) I
-_.- dx du

o 0 x

r
: fl1lin(U,i1. (:; HI ..i:!) dx ru + x

::s; du ~ Ifl/(I)I dl
"0 0 x "'u x

= J,:/4 Ifl/(I)I dt I21.. In 2 U I du
o 12/.111 lu-I

+ fI.1/
41

: II'" (t)1 dt f:/2 In U du
\/4' 12/311 2 lu - tl

+ j,13/4
1
: 1/"(1)1 dt JI.. 21+:I/.1 In 2~- u \. du

:/4 :12 U - I

+f: Ifl/(I)I dt fI21+. :)/1 In ~-u I duo (2.20)
13/4): 21 \ 2 t-u

Four inner integrals on the right-hand side of (2.20) may be calculated
directly by the integrating by parts. For example, for z/4::S; I ::s; z/2 we have

j(21+:
I
/3 ln z - u du = (z/2 _ t) In 2( 1 - 2t/z) + (z - t) In 3z . (2.21)

=/2 2(u - t) 4(z - t)

The first summand on the right-hand side of (2.21) is negative, the
second is less than (z -I) In ~. Since t/(z + t) ~ ~ for the range of t con­
sidered, the integral in (2.21) may be estimated by C(I Iz - tl/(z + I)). Other
estimates may be obtained in a similar way.
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This yields the following estimate:

rIfmifil
11/2.1 0 - 11 }i2 \ ,,--1_"'(e-u_-_.I:_")_--=fe-'_(u_+_.I:_·) dx Idu

o 0 x

~ c rt(:: - t) 1("(1)1 dt.
o ::+t "

Now we have to estimate Lr 11'(x)1 dx.

Joe IF(x)1 dx = SOi
2 j.f' (~) - rOi2

ret) dtl {fy
(J 0 2.,

359

(2.22)

~:: /I' G)! +[2 t Ir(l)1 dt+ (2 (::-1) If"(!)1 dt. (2.23)

Differentiating the identity (2.17), we obtain

z1' G) = fez) + t(O)+ [i2 t("( t) dt - (2 (:: - t) f"(t) dt. (2.24)

Furthermore,

{f 11'(x)1 dx = (' dx Itf f"(t) dt1~ fY (t -::) Ir(t)1 dt

~2 Jf~ 1("(1)1 dt.
o :: + t "

(2.25)

Combining inequalities (2.4), (2.18), (2.19), (2.22 )-( 2.25), we obtain the
estimate (2.15). In order to prove (2.16) we need the following estimates.

• Y Isin ::r ( . ( n) .( n)1
J ... -.' 1 ::-- -j ::+- (~r
,,2: y 2y 2y

<: f0 Ip:: - x) - f( :: + x) I d"
~ ~,

(J x
(2.26)
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J"i10

IJ> f(x) COS XydXI {~V
() 0

=J,.n/l: I~ J'f /'(X)SinXJ'dX! dy
() y ()

;(J"/10 {(V j",,/l\ 1/,(x)lxdx+ 1"/10 I ~1 J'f f"(X)COSXYdxl dy
o 0 () J nih

;(~ J" 1/,(x)1 dX+~2 If. (X-:) If"(x)1 dx
2 () 0

;( c (f 1/,(x)1 dx +J" x~y- :) If"(x)1 dX).
o 0 ~ +.x

(2.27)

Using (2.3). (2.15), (2.26), (2.27), we complete the proof of Theorem 2. I
The following statement provides us with a generalization of Theorem 2

to functions with derivative having a jump discontinuity at one point.

COROLLARY 1. Let /' he a locally ahsolutely continuous function on [0, :)
and (:, ::xJ), : > 0. Suppose,further, that 1/'(:± )1 < 'lJ, lim, ~ + "f(x) = 0, and

J'C- x II"(x)1 dx +J'1+' x II"(x}\ dx < Cf].

o 0

Then

I()" Il(.\)\ dx;( c (II(O)I +II(:)I +r1ft: - x) ~f(:+x)1 dx
o .\

+f x~::.~y) If"(x)1 dx+ r~ X~\+~y:) If"(x)1 dX)'

(2.28)

Proof Let us put for x E [.:: - £, : + £], where £ > 0 is small enough,

/'(Z+f:)+/'(.::-[,) /,(:+c)-f'(z-c) ,
g( x) = 4 ' (x - :) 3 + (x - z)-[,- 4c

/'(Z+[,)+1'(Z-[,) /'(z+[,)-/'(Z-[,)
- 4 (x-z)-£ 4

f(: + £) - I( Z - f:) 1 I( Z + f:) - I(.:: - c)
- (x-z) +3 (x-.::)

4£' 4£

I(: + ,';) + I(: - f: )
+ 2 "
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and g(x) =f(x) otherwise. It is evident that g satisfies the conditions of
Theorem 2. So we have,

j'f l.i(x)1 dx~fox, Ige(x)1 dx+f
o

f

Il(x)-g,(x)1 dx
()

+ r-t: x(.: - x) 1I"(x)1 dx
() .::+x

If x(x-.::) ./) .
+ cH .:: +x I/'(x)\ dx + C Ig(.::) -/(.::)[

+ C f=H x I.: -xl Ig"(x)1 dx
'c->: .::+x

J
'= I f(.:: - x) - g(.:: - x) + g(.:: + x) - f(.:: + x) 1 d+c- x
o x

+I'f II(x)-ge(x)ldx
.()

We have Il([;)~/dO), and Cll(O) coincides with the right-hand side of
the inequality (2.28). It now remains to prove that lime ~ 0 Iii 1;;) = 0,
j= 2,3,4,5.

It is easy to see, that

. _I f(.: + 1;;) + f(.:: - I;; ) • I' (.:: + 1;;) - I' (.: - f;) . _I
I, (t.) - - I. 4 - f (- )"2 .

~~f; sup 1/,(X)I+-
2

1
If(.::+[;)-2f(.::)+f('::-I;;)I,

2 .\ E [0. f. I

and the first term tends to zero with I;; -> 0 and the second one is small by
virtue of the continuity of f

. joC+.'X!'::-X1j/'('::+I:)+I'(Z-I:) . _
I,(r;)= =_, .::+x 2[;2 3(x-_)

I' (z - [;) - I' (.:: - /;) f(.:: + r;) - f(.: - 1;;) . ., .
+ - ') , 3(.\ -I.) d.\2r; _I;;

";;4[; sup I/,(x)/+If(.::+[;)-f('::-I:)/,
XE [0. f.)
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and the same reasoning is true.

f(z+e)-f(z-e).3 f(z+e)-f(Z-e).1 dx
- 4 0 .\ + 3 4 .\ -,

e- e x

and the first integral is small because H(( If( z - x) - f( z + x) I)/x) dx
converges and the second one may be estimated as 13(e).

Finally, it remains to estimate 15 (£), Let us denote h(x) =f(x) - g(x).

Notice that supp h c [z - e, z +e], h is a differentiable function on [0, oc),

and

+ 8 sup 1/,(x)1 < C
XE [0. x" \

(2.29)

where C does not depend on c. Thus, lIe is an entire function of exponential
type z + 11, and we are able to use the Wiener inequality [19, p. 81 ]

It follows from (2.29) that for Inl > 0

(z + e)21 I2
l< • I= Inl 0 h'((z+l1)x)smnxdx ~Cn'2,

(2.30)

(2.31 )

where C does not depend on [; and n.
.• . '} Ii-c)!...} \Z-/;) j\z-rC)-./IZ-C) .. , .

+ 2 - .... , 3(.\ - t) d.\
e L[

~4e sup I/,(x)/+If(z+e)-f(z-e)/,
XE [0. Y.)
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Denoting by N=[e- I
/
2

] and using (2.30)-(2.32), we obtain

15([;)~C( I Ih .. (~n~)I+ L Il1 .. (!--)I)
n ~ -N ~ + [; 1111> N ~ + [;

~C((2N+l)[;+ L. n 2)~cfi.
1111> i,'

This completes the proof of Corollary 1. I

3. ESTIMATES OF BEST ApPROXIMATION
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Let F be a function satisfying the following conditions:

(1) F is a continuous function on 1R;

(2) FEL1(1R),I;EL](IR);

(3) I;(x) and (didx) I;(x) are locally absolutely continuous functions
on [0, Cfj) such that

OJ. Id
2 IL X dx2 I. (x) dx < CD.

By S we denote the subset of L1(1R) of all even F satisfying the condi­
tions (1 H 3).

Let us consider an operator Q,,: S -> B"

2 oil _

Q,,(F, .V) = - j (F;.(x) - 1;(2u - x)) cos xy dx.
n 0

THEOREM 3. If FE S, then

A,,(F)] ~ IIF( . ) - Q,,(F, . )11 L'IR)

(
OJ \ d

2 I)~ C 1F.(u)! + 11;(2u)1 +L x dx 2 I;(x + u) dx .

Prool Let us denote

(3.1 )

We have

f
. {1;(2U-X),
(x)=

. F;(x),

o~x~u;
x>u.

1.f'(u±)1 < oc, f(u) = F;(u), frO) = F;(2u). (3.2)
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It is clear that f satisfies all the conditions of Corollary I for z = a. Using
(2.28) and (3.2) we obtain

i f , (, " frrx(a-x)l
d2

" Il.f(x)1 dx:::::; C 1F,(a)\ + 1F,(2a)\ + -,0 F,(2a - x) dx
o 0 a +x (x-

r
-< x( x - a) I(j2, I )+ . -,.2 F,.(x) dx

'0 a +.X LX

:::::; c (If;( a) + 1f;(2a)I +r x I(;~,22 f;(x + a) Idx

Jf Id2

" I)+ (x-a) ---::1F;(x)
() d.\

( , , f f. Id
2

" I):::::;c 1F,(a)I+IF,(2a)l+ 0 x dx 2 F,(x+a) dx.

In order to prove (3./) it is enough to observe that conditions (/) and
(2) imply the identity

2 '
F(x) - Qrr(F, x) =- .I:.(x).

7l

Theorem 3 is proved. I

The following result is a generalization of Theorem 3 to the case of
approximation in L p ( IR), I :::::; p ~ 2.

COROLLARY 2. If FE S n L 2 ('f?,), Ihen for 1:::::; p ~ 2

(

if" Id21 )12iP I-.l
x II;(a)1 + 11;(2a)1 +t x dx2 I;(a + x) dx

Proof Observe that if FE L 2(1R), then

(3.3)

(3.4 )

IIF(· )-Qrr(F, . )IILIRI=c(L' (I;(X))2dx+ L' (1;(2a-x))2 dX )

:::::;C r (f;(X))2dx.
rr
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Now, using Holder's inequality we have
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IIF(·) - Q,,(F, . )11£ III) =J' IF(x) - Q,,(F, xW -p IF(x) - Q,,(F, XWP-2 dx
e R

~IIF(')-Q,,(F, ')lIi~~,IIF(')-Q,,(F, ')II;I;(R~'

(3.5 )

Combining (3.1), (3.4). (3.5) we complete the proof of Corollary 2. I

Remark 2. Periodic analogues of Theorem 3 and Corollary 2 are estab­
lished in [8].

4. ESTIMATE OF BEST ApPROXIMATION OF

SOME INFINITELY DIFFERENTIAL FUNCTIONS

Let us put

x>O
x~O.

qJ;.,.i(x)=(sgnxrlxl'exp(-A Ixl-').

where C( > 0, A> O. 2 E ~ are some constants.

THEOREM 4. If 1 ~ p ~ 2, a> 0, i = 0, 1, 2. then

i = I, 2,

where

(4.1 )

lAp + a.p + 2
m I' = - 2p( I + a.) ,

a.rrM=(I+a. I)(Aa.)III+,ICOS-_-
2( I + oc)

(4.2)

For the proof of the theorem we need several auxiliary results. We first
will find the asymptotic behavior of the Fourier transform of qJ l.;t. 1 for
I. < -I. Then we will extend this result to any A.

Let iC + denote the complex plane, cut along the negative real axis; let :::11

be the branch of this function in iC + which takes positive values for real
:::>0.



366 GANZBURG AND LIFLYAND

LEMMA 3. fl A< -I, thenlor y ---+ +CIJ

j'f z)exp( -Az-~-izy)dz
o

= Cy 12,( + 2 + ,~li21 I +~ I

x exp( -( I + IX I )(AIX)lil I +~) y~i(1 +xleixn i 211 +oc))( 1+ 0(1 )). (4.3)

Prool Let us denote

zo = (Ao::) Iii I + ~I Y -Iii I + ~)e - ;n,i2( I + ~I

/R={ZEC+:Z=pzo,O<p~R}, R>I

lR={ZEC+: Izl=R'-2(I:IX) <argz<o}

D=/Ru[O,R]uIR·

The function f( z) = z) exp( - Az~ - iZ.F) is analytic inside the curve D,
and lim R ~ +y R max IR If( z) I = O. Therefore, we obtain

t f(z) dz=O, lim J If(z)lldzl =0.
R ......... +I I'R

(4.4)

We have that ft, I(z) dz coincides with the right-hand side of (4.3). This
fact for A=O, A = I was proved in [5], formula (7.42). Note that there are
several misprints in the formula but the proof is correct. For A< -1, A i= 1
the proof is analogous. Therefore, (4.4) implies (4.3) and Lemma I is
proved. I

In the case A> -I the functions qJ A. ~.; do not belong to L I ( IR), and we
shall use another approach.

LEMMA 4. We have

'"
((pI I (x) = " C qJ (\')).. ~. 0 1... j ), - '" ~j.~. 0 •

j~O

where Cj , 0 ~ j ~ m, m = 0, I, ... are some constants.

The identity (4.5) may be verified easily by induction on m.

(4.5)
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LEMMA 5. Let AE IR and k = [ IAI] + 2. Then there exists an entire
function go of exponential type 1 such that 11({J,.~.o-goIILIII'!I<CX)'andlor
al! y> 1, tIl~k

Proof It follows from (4.5) that ({Jj~:';. 0 E L] (rR) for all til = k, k + 1, ....
In virtue of Jackson's theorem [16, p.260], [6] there exists a kernel
Gk E L1(1R) (l L 2(1R) such that a convolution go(x) = ({J;.. x.O * Gd(x)
belongs to B I , g~m)EL2(1R), tIl~k, and

til =0,1, .... (4.7)

Integrating by parts and using the Wiener-Paley theorem [14, p. 13J we
have for y > 1, til ~ k

=(-i) mV--mf ({JIm) (x)_glml(x))e IXI'dx
. A.~. 0 0I'!

=imv- m j" mimi (x)e-iX1'dx.
~. 't' .I., cr.. 0I'!

This proves Lemma 5. I

Now we are able to prove Theorem 4.

Prool ol Theorem 4. Let us put

F(x) = f({J).~. 2(X),
I ({J;.~. 2(X) - (go(x) + go( -x) )/2,

A< -3,

A~ -3,

where go is the same function as in Lemma 5. For (I ~ 1, I ~ p ~ 2 we have

(4.8)

It follows from (4.3), (4.5) that for A< -3, 0~/~2, y>O

Id/~I~Y)1 ~ III'! ({JA+b,O(x)e IX\ dxl ~ c)m l 1/(i+~1 exp( _My~/i1 +~I)
(4.9)

where ml' and M are defined by (4.2).
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In the case A~ -3, 0 ~ I~ 2, y> I we obtain from (4.3), (4.5), (4.6)

= (1 + 0(1 )) Y -(k + 21 IJ
iR

x'<pi~: ~)(x)e -/\\ dx I

=(I+o(I))y- 1
k+2) It <PJ.+I_(k+2111+~I.~.o(x)e·l.H'dXI

~C.l''''l lill+'lexp(-My'ill+~}). (4.10)

Thus, (4.9), (4.10) yield the relation

1 ~1P'.(Y) I ~ Cy"'l Iii 1+ ":] exp( _ My'/( I +~)),
dyl

y> I, 0 ~ I ~ 2. (4.11 )

It follows from (4.11) that F satisfies all the conditions of Corollary 2. It
remains to estimate the integrals on the right-hand side of the inequality
(3.3 ).

Using (4.11) and the asymptotics (/1 > 0, t --> +oc), which may be
obtained by integrating by parts twice,

we have

~C(Jf.. ym]{I+~)i'+le-MYdy_a Jcc ymlll+~J/'- l/ote - MY dy )
rrl,ll III al:l1t-ll

(4.13)

Collecting now (3.3), (4.11 H 4.13) we complete the proof of the
inequality (4.1) for i = 2.
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In order to prove (4.1) for i = 0, and i = 1 we observe that

rp;. x. 0 ( x) = (rp ;. x. I ( x) + (rp ;. x. 2 ( X ) )/2.

Applying (4.14) and (4.1 ) for i = 2 we obtain
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(4.14)

A ( <C --lA' <C'" -Ma"."PIa rp;.. x. ill' "'" a a( rp).. x. 1)1' "'" a Pe ;

A a( rp ;. x. 0)1' :::; !( A a( rp A. x. d I' + A a( rp ). x. ~)1') :::; Ca"'pe

Theorem 4 is proved. I

Remark 3. The inequalities (4.1) holds also in the case 2 < p:::; w. It
may be proved by using (1.2). Finally, we note that the estimates (4.1) are
precise for all p, I :::; p:::; oc, with respect to the rate of approximation (as
a -> ,oc), i.e.,

A (m.) ~ca"'pexp(-MaXi(l+xl).
rr.'t' .... ,:x., I p

These inequalities are established in [8].
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